organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4-Chlorophenyl)-4-(4-methoxyphenyl)-3-(2-pyridyl)-4H-1,2,4-triazole

Zhao-Di Liu, Shu-Ping Zhang, Ying Wei and Si-Chang Shao*

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Received 24 October 2007; accepted 2 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.130; data-to-parameter ratio = 14.5.

In the title compound, C₂₀H₁₅ClN₄O, the methoxy- and chlorophenyl rings form dihedral angles of 63.2 (1) and $31.1 (1)^{\circ}$, respectively, with the triazole ring, and the dihedral angle between the triazole and pyridine rings is $35.1 (1)^{\circ}$. Centrosymmetrically related molecules are linked together by weak $C-H \cdots N$ hydrogen bonds, forming a dimer.

Related literature

For the structural details of 4-(4-methoxyphenyl)-3-(2-pyridvl)-5-(4-methylphenyl)-4H-1,2,4-triazole, see: Zhang et al. (2006).

Experimental

C ₂₀ H ₁₅ ClN ₄ O	c = 10.274 (4) Å
$M_r = 362.81$	$\alpha = 70.415 (5)^{\circ}$
Triclinic, P1	$\beta = 73.417 \ (6)^{\circ}$
a = 9.808 (4) Å	$\gamma = 69.768 \ (6)^{\circ}$
b = 10.083 (4) Å	V = 881.5 (6) Å

Z = 2
Mo $K\alpha$ radiation
$\mu = 0.23 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	6776 measured reflections
diffractometer	3411 independent reflections
Absorption correction: multi-scan	2757 reflections with $I > 2\sigma($
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.019$
$T_{\min} = 0.966, \ T_{\max} = 0.977$	

T = 298 (2) K $0.15 \times 0.15 \times 0.10 \text{ mm}$

 $2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 236 parameters $wR(F^2) = 0.130$ H-atom parameters constrained S = 1.05 $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.24$ e Å⁻³ 3411 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H22\cdots N4^i$	0.93	2.60	3.454 (3)	154
Symmetry code: (i) -	-x, -y, -z+2.			

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Fuyang Normal College, China, for research grant No. 2005LQ06.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2502).

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, S.-P., Liu, Z.-D., Chen, S.-D., Yang, S.-P. & Shao, S. (2006). Acta Cryst. E62, o1516-o1517.

supplementary materials

Acta Cryst. (2007). E63, o4634 [doi:10.1107/S160053680705547X]

5-(4-Chlorophenyl)-4-(4-methoxyphenyl)-3-(2-pyridyl)-4H-1,2,4-triazole

Z.-D. Liu, S.-P. Zhang, Y. Wei and S.-C. Shao

Comment

In the title molecule (Fig. 1), the pyridine and benzene rings lie in a propeller arrangement around the central 1,2,4-triazole ring, thereby minimizing the steric effects among these rings. The dihedral angles between the pyridine ring and the two benzene rings (C8—C13 and C15—C20) are 58.4 (1) and 65.4 (1)°, respectively. These two benzene rings form dihedral angles of 63.2 (1) and 31.1 (1)°, respectively, with the triazole ring, and the dihedral angle between the triazole ring and the pyridine ring is $35.1 (1)^\circ$.

In the crystal structure, molecules related by a center of symmetry are linked by C—H…N hydrogen bonds (Table 1), forming a dimer.

Experimental

The title compound was synthesized according to a literature method (Zhang *et al.*, 2006). Equivalent amounts of *p*-methoxyphosphazoanilide and *N*-pyridyl-*N*-*p*-chlorophenylhydrazine were reacted in ethanol (15 ml) for 1 h. After allowing the resulting solution to stand in air for 15 d, colourless crystals were formed on slow evaporation of the solvent. The crystals were isolated, washed with ethanol and dried.

Refinement

H atoms were placed in idealized positions (C—H = 0.93 or 0.96 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ or 1.5(methyl) $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, with atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

5-(4-Chlorophenyl)-4-(4-methoxyphenyl)-3-(2-pyridyl)-4H-1,2,4-triazole

Crystal	data

C ₂₀ H ₁₅ ClN ₄ O	Z = 2
$M_r = 362.81$	$F_{000} = 376$

Triclinic, PI
Hall symbol: -P 1
a = 9.808 (4) Å
<i>b</i> = 10.083 (4) Å
c = 10.274 (4) Å
$\alpha = 70.415 \ (5)^{\circ}$
$\beta = 73.417 \ (6)^{\circ}$
$\gamma = 69.768 \ (6)^{\circ}$
V = 881.5 (6) Å ³

Data collection

Bruker SMART CCD area-detector diffractometer	3411 independent reflections
Radiation source: fine-focus sealed tube	2757 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 298(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.966, \ T_{\max} = 0.977$	$k = -12 \rightarrow 11$
6776 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 0.1955P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3411 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
236 parameters	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $D_x = 1.367 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 4.2-28.3^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 (2) KBlock, colourless $0.15 \times 0.15 \times 0.10 \text{ mm}$

Cell parameters from 1472 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.3198 (2)	0.0397 (2)	0.83095 (19)	0.0450 (4)
C2	0.3227 (2)	-0.0760 (2)	1.0498 (2)	0.0444 (4)
C3	0.2817 (2)	-0.1236 (2)	1.2046 (2)	0.0467 (5)
C4	0.3906 (3)	-0.1979 (3)	1.2842 (3)	0.0661 (6)
H12	0.4901	-0.2188	1.2412	0.079*
C5	0.3496 (4)	-0.2400 (3)	1.4270 (3)	0.0842 (8)
H13	0.4208	-0.2899	1.4832	0.101*
C6	0.2020 (4)	-0.2079 (3)	1.4866 (3)	0.0823 (8)
H14	0.1713	-0.2336	1.5839	0.099*
C7	0.1004 (3)	-0.1368 (3)	1.3999 (2)	0.0706 (7)
H15	0.0003	-0.1176	1.4409	0.085*
C8	0.12017 (19)	0.15735 (19)	1.00964 (17)	0.0381 (4)
C9	-0.0141 (2)	0.18012 (19)	0.97612 (18)	0.0408 (4)
H22	-0.0206	0.1288	0.9189	0.049*
C10	-0.1389 (2)	0.27883 (19)	1.02726 (19)	0.0429 (4)
H21	-0.2295	0.2946	1.0047	0.052*
C11	-0.1277 (2)	0.35414 (19)	1.11251 (19)	0.0435 (4)
C12	0.0091 (2)	0.3351 (2)	1.1402 (2)	0.0489 (5)
H19	0.0168	0.3893	1.1940	0.059*
C13	0.1335 (2)	0.2371 (2)	1.08900 (19)	0.0449 (4)
H18	0.2252	0.2248	1.1076	0.054*
C14	-0.3877 (3)	0.4630 (3)	1.1557 (3)	0.0857 (8)
H23A	-0.3959	0.5108	1.0591	0.128*
H23B	-0.4612	0.5204	1.2149	0.128*
H23C	-0.4029	0.3678	1.1808	0.128*
C15	0.2846 (2)	0.1481 (2)	0.69997 (19)	0.0445 (4)
C16	0.3221 (2)	0.1024 (2)	0.5780 (2)	0.0571 (5)
Н5	0.3610	0.0030	0.5829	0.069*
C17	0.3029 (3)	0.2014 (3)	0.4497 (2)	0.0628 (6)
Н6	0.3294	0.1694	0.3686	0.075*
C18	0.2441 (2)	0.3477 (3)	0.4434 (2)	0.0545 (5)
C19	0.2046 (2)	0.3961 (2)	0.5624 (2)	0.0568 (5)
H2	0.1638	0.4955	0.5571	0.068*
C20	0.2259 (2)	0.2966 (2)	0.6897 (2)	0.0515 (5)
H3	0.2005	0.3296	0.7701	0.062*
Cl1	0.22050 (7)	0.47545 (8)	0.28259 (6)	0.0782 (2)
N1	0.43195 (19)	-0.07819 (18)	0.83541 (18)	0.0565 (5)
N2	0.43441 (18)	-0.15167 (18)	0.97501 (18)	0.0557 (5)
N3	0.24694 (16)	0.04656 (16)	0.96486 (15)	0.0406 (4)
N4	0.13735 (19)	-0.0939 (2)	1.26017 (17)	0.0568 (5)
01	-0.24465 (16)	0.44833 (16)	1.17406 (16)	0.0624 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0438 (10)	0.0449 (10)	0.0438 (10)	-0.0108 (8)	-0.0011 (8)	-0.0162 (8)
C2	0.0420 (10)	0.0416 (10)	0.0485 (10)	-0.0104 (8)	-0.0115 (8)	-0.0094 (8)
C3	0.0534 (11)	0.0420 (10)	0.0474 (11)	-0.0160 (8)	-0.0153 (9)	-0.0076 (8)
C4	0.0681 (14)	0.0651 (14)	0.0683 (15)	-0.0242 (12)	-0.0315 (12)	-0.0003 (12)
C5	0.109 (2)	0.0849 (19)	0.0684 (16)	-0.0380 (17)	-0.0533 (16)	0.0093 (14)
C6	0.127 (3)	0.0809 (18)	0.0454 (13)	-0.0469 (18)	-0.0237 (15)	-0.0002 (12)
C7	0.0814 (17)	0.0750 (16)	0.0487 (13)	-0.0270 (13)	-0.0035 (12)	-0.0097 (11)
C8	0.0412 (9)	0.0375 (9)	0.0325 (8)	-0.0091 (7)	-0.0044 (7)	-0.0093 (7)
C9	0.0501 (10)	0.0400 (10)	0.0350 (9)	-0.0131 (8)	-0.0111 (8)	-0.0103 (7)
C10	0.0433 (10)	0.0409 (10)	0.0421 (10)	-0.0087 (8)	-0.0123 (8)	-0.0075 (8)
C11	0.0475 (10)	0.0371 (9)	0.0399 (9)	-0.0070 (8)	-0.0052 (8)	-0.0103 (8)
C12	0.0579 (12)	0.0497 (11)	0.0470 (11)	-0.0149 (9)	-0.0101 (9)	-0.0226 (9)
C13	0.0433 (10)	0.0518 (11)	0.0443 (10)	-0.0137 (8)	-0.0118 (8)	-0.0152 (9)
C14	0.0478 (13)	0.0877 (19)	0.120 (2)	0.0103 (12)	-0.0154 (14)	-0.0554 (17)
C15	0.0420 (10)	0.0486 (11)	0.0406 (10)	-0.0118 (8)	0.0003 (8)	-0.0165 (8)
C16	0.0609 (13)	0.0566 (13)	0.0519 (12)	-0.0084 (10)	-0.0049 (10)	-0.0251 (10)
C17	0.0655 (14)	0.0820 (16)	0.0425 (11)	-0.0179 (12)	-0.0036 (10)	-0.0265 (11)
C18	0.0482 (11)	0.0711 (14)	0.0417 (11)	-0.0213 (10)	-0.0076 (8)	-0.0078 (10)
C19	0.0639 (13)	0.0501 (12)	0.0500 (12)	-0.0146 (10)	-0.0065 (10)	-0.0100 (10)
C20	0.0614 (12)	0.0506 (12)	0.0399 (10)	-0.0146 (9)	-0.0029 (9)	-0.0154 (9)
C11	0.0825 (4)	0.1001 (5)	0.0479 (3)	-0.0364 (4)	-0.0219 (3)	0.0050 (3)
N1	0.0539 (10)	0.0480 (10)	0.0529 (10)	-0.0048 (8)	0.0011 (8)	-0.0139 (8)
N2	0.0507 (10)	0.0461 (9)	0.0576 (10)	-0.0044 (8)	-0.0077 (8)	-0.0093 (8)
N3	0.0401 (8)	0.0403 (8)	0.0394 (8)	-0.0079 (6)	-0.0075 (6)	-0.0114 (6)
N4	0.0585 (11)	0.0623 (11)	0.0445 (9)	-0.0164 (9)	-0.0095 (8)	-0.0085 (8)
01	0.0557 (9)	0.0583 (9)	0.0712 (10)	-0.0017 (7)	-0.0065 (7)	-0.0339 (8)

Geometric parameters (Å, °)

C1—N1	1.309 (2)	C10—H21	0.93
C1—N3	1.370 (2)	C11—O1	1.361 (2)
C1—C15	1.464 (3)	C11—C12	1.385 (3)
C2—N2	1.307 (2)	C12—C13	1.375 (3)
C2—N3	1.361 (2)	С12—Н19	0.93
C2—C3	1.476 (3)	C13—H18	0.93
C3—N4	1.334 (3)	C14—O1	1.419 (3)
C3—C4	1.381 (3)	C14—H23A	0.96
C4—C5	1.363 (4)	C14—H23B	0.96
C4—H12	0.93	C14—H23C	0.96
C5—C6	1.370 (4)	C15—C20	1.384 (3)
С5—Н13	0.93	C15—C16	1.387 (3)
C6—C7	1.373 (4)	C16—C17	1.378 (3)
С6—Н14	0.93	С16—Н5	0.93
C7—N4	1.332 (3)	C17—C18	1.372 (3)
С7—Н15	0.93	С17—Н6	0.93

C8—C13	1.379 (3)	C18—C19	1.372 (3)
C8—C9	1.380 (3)	C18—C11	1.740 (2)
C8—N3	1.436 (2)	C19—C20	1.375 (3)
C9—C10	1.380 (2)	С19—Н2	0.93
С9—Н22	0.93	С20—Н3	0.93
C10—C11	1.384 (3)	N1—N2	1.379 (2)
N1—C1—N3	109.87 (17)	C11—C12—H19	119.6
N1—C1—C15	123.48 (17)	C12—C13—C8	118.90 (18)
N3—C1—C15	126.62 (16)	С12—С13—Н18	120.5
N2—C2—N3	110.62 (17)	C8—C13—H18	120.5
N2—C2—C3	123.71 (17)	O1—C14—H23A	109.5
N3—C2—C3	125.59 (16)	O1—C14—H23B	109.5
N4—C3—C4	123.3 (2)	H23A—C14—H23B	109.5
N4—C3—C2	116.75 (17)	O1—C14—H23C	109.5
C4—C3—C2	119.97 (19)	H23A—C14—H23C	109.5
C5—C4—C3	118.7 (2)	H23B—C14—H23C	109.5
C5—C4—H12	120.6	C20—C15—C16	118.10 (19)
C3—C4—H12	120.6	C20—C15—C1	122.82 (17)
C4—C5—C6	119.0 (2)	C16—C15—C1	118.88 (18)
C4—C5—H13	120.5	C17—C16—C15	121.3 (2)
С6—С5—Н13	120.5	С17—С16—Н5	119.3
C5—C6—C7	118.7 (2)	С15—С16—Н5	119.3
С5—С6—Н14	120.6	C18—C17—C16	119.05 (19)
С7—С6—Н14	120.6	С18—С17—Н6	120.5
N4—C7—C6	123.5 (2)	С16—С17—Н6	120.5
N4—C7—H15	118.2	C19—C18—C17	121.0 (2)
С6—С7—Н15	118.2	C19—C18—Cl1	118.90 (18)
C13—C8—C9	120.80 (16)	C17—C18—Cl1	120.10 (17)
C13—C8—N3	119.40 (16)	C18—C19—C20	119.5 (2)
C9—C8—N3	119.78 (15)	С18—С19—Н2	120.3
C8—C9—C10	120.17 (17)	С20—С19—Н2	120.3
C8—C9—H22	119.9	C19—C20—C15	121.07 (18)
C10—C9—H22	119.9	С19—С20—Н3	119.5
C9—C10—C11	119.31 (18)	С15—С20—Н3	119.5
C9—C10—H21	120.3	C1—N1—N2	107.71 (15)
C11—C10—H21	120.3	C2—N2—N1	107.13 (15)
O1—C11—C10	124.12 (18)	C2—N3—C1	104.68 (15)
01—C11—C12	115.96 (17)	C2—N3—C8	126.39 (15)
C10-C11-C12	119.92 (16)	C1—N3—C8	128.93 (15)
C13—C12—C11	120.77 (17)	C7—N4—C3	116.75 (19)
С13—С12—Н19	119.6	C11—O1—C14	117.50 (17)
N2-C2-C3-N4	-142.6(2)	C17—C18—C19—C20	0.8 (3)
N3-C2-C3-N4	33.7 (3)	Cl1—C18—C19—C20	-178.51 (16)
N2-C2-C3-C4	35.9 (3)	C18—C19—C20—C15	-0.9(3)
N3—C2—C3—C4	-147.8 (2)	C16—C15—C20—C19	0.3 (3)
N4—C3—C4—C5	-1.8 (4)	C1—C15—C20—C19	175.11 (19)
C2—C3—C4—C5	179.8 (2)	N3—C1—N1—N2	-0.1 (2)
C3—C4—C5—C6	0.3 (4)	C15-C1-N1-N2	177.91 (17)
			- (- /)

supplementary materials

C4—C5—C6—C7	1.3 (4)	N3—C2—N2—N1		-0.8 (2)
C5-C6-C7-N4	-1.6 (4)	C3—C2—N2—N1		176.01 (18)
C13—C8—C9—C10	-2.9 (3)	C1—N1—N2—C2		0.5 (2)
N3-C8-C9-C10	175.30 (15)	N2—C2—N3—C1		0.8 (2)
C8—C9—C10—C11	-0.1 (3)	C3—C2—N3—C1		-175.99 (18)
C9—C10—C11—O1	-176.64 (17)	N2—C2—N3—C8		-178.47 (17)
C9—C10—C11—C12	3.0 (3)	C3—C2—N3—C8		4.8 (3)
O1-C11-C12-C13	176.80 (17)	N1—C1—N3—C2		-0.4 (2)
C10-C11-C12-C13	-2.9 (3)	C15—C1—N3—C2		-178.31 (18)
C11—C12—C13—C8	-0.2 (3)	N1—C1—N3—C8		178.80 (18)
C9—C8—C13—C12	3.1 (3)	C15—C1—N3—C8		0.9 (3)
N3—C8—C13—C12	-175.17 (16)	C13—C8—N3—C2		62.1 (2)
N1-C1-C15-C20	-145.4 (2)	C9—C8—N3—C2		-116.2 (2)
N3-C1-C15-C20	32.2 (3)	C13—C8—N3—C1		-117.0 (2)
N1-C1-C15-C16	29.4 (3)	C9—C8—N3—C1		64.8 (3)
N3-C1-C15-C16	-153.0 (2)	C6—C7—N4—C3		0.2 (4)
C20-C15-C16-C17	0.5 (3)	C4—C3—N4—C7		1.6 (3)
C1-C15-C16-C17	-174.54 (19)	C2—C3—N4—C7		-179.95 (19)
C15-C16-C17-C18	-0.6 (3)	C10-C11-O1-C14		3.8 (3)
C16-C17-C18-C19	0.0 (3)	C12—C11—O1—C14		-175.9 (2)
C16—C17—C18—Cl1	179.26 (17)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —1	Н Н…А	$D \cdots A$	D—H···A
C9— $H22$ ···N4 ⁱ	0.93	2.60	3.454 (3)	154

C9—H22···N4ⁱ Symmetry codes: (i) -x, -y, -z+2.

sup-6

Fig. 1